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Smart grid

• embed intelligence in energy systems to

– do more with less
– reduce CO2 emissions
– handle uncertainties in generation (wind, solar, . . . )
– exploit new demand response capabilities
– handle shift towards EVs
– extend life of current infrastructure

• cf. current system

– load is what it is; generation scheduled to match it
– systems built with large margins for max load
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Smart grid critical technologies: The big picture

• physical layer

– photovoltaics, switches, storage, fuel cells, . . .

• infrastructure/plumbing

– smart enabled stuff, communication protocols, security, . . .

• algorithms (our focus)

– real-time decision making

• economics layer

– markets, investment, regulation, . . .
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Optimization

• algorithm chooses optimal (or just good) values of some (decision)
variables, given mathematical model, objectives, and constraints

• a.k.a. operations research, synthesis, automatic control, planning, . . .

• modern age dates to 1948; huge advances (mostly, Moore’s law) since

• widely used in hundreds of disciplines and industries

– economics, finance, supply-chain, operations, advertising
– statistics, machine learning, signal processing
– aerospace, engineering design
– and yes, energy systems
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Optimization

• optimization can be organized/implemented several ways

– centralized
– distributed (tightly or loosely coupled)
– ad hoc, self-organized, peer-to-peer
– market, auction

or any combination . . .

• our ability to solve optimization problems varies widely, depending on

– mathematical form of problem (convexity)
– problem scale
– required solution time, reliability
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Real-time embedded optimization for the smart grid

• embed optimization technology in devices & systems for energy
generation, delivery, storage, and use

• embedded optimization can be used for (real-time)

– allocation (and re-allocation) of resources
– routing of power, work, other commodities over a network
– scheduling delivery, generation, usage
– clearing markets, coordination, planning
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Real-time embedded optimization for the smart grid

• embedded optimization can handle

– dynamic (time) effects: storage, deferrable loads, dynamic constraints
– spatial effects: networks, generator/load locations, transmission line
losses/capacities

– uncertainty in demand, generation (wind/solar), prices
– losses, failures, gross system changes (e.g., communication loss)

• embedded optimization is what will make the smart grid ‘smart’
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Real-time embedded optimization

• not a radical concept: already used for

– generator dispatch
– process control
– flight management, control
– finance
– airline scheduling
– supply chain optimization, revenue management

• often associated with ‘big iron’ systems

– big computers
– hours of computation time
– staff of PhDs to babysit/oversee
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What’s new

• optimization can be embedded in small systems

• new methods allow

– optimization in micro/milliseconds
(1000× faster than generic fast solvers)

– reliable code, small footprint
– distributed architectures

• can embed in individual HVAC systems, refrigerators, PHEVs, data
centers, distributed generation/storage, . . .
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Dynamic optimization with recourse

• actions (choices)

– are taken (made) repeatedly
– affect future (expend resources, do work, . . . )
– must be made with current information

• has many names

– sequential decision making
– automatic control, stochastic control

• extensive theory

– can solve some special cases (linear dynamics, quadratic objective)
– general case intractable
– many suboptimal methods that work well
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Receding horizon control

• a (powerful) heuristic for stochastic control

• based on solving an optimization problem in each step

• relies on model of system evolution, including effects

– within our control (‘actions’ or ‘inputs’)
– outside our control (‘disturbances’, ‘exogenous inputs’)

• RHC algorithm: at each time step

– predict future disturbances using current information
– plan (optimize) actions 30 steps into the future, assuming predictions
are correct

– execute first step in the plan
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Receding horizon control

• predictions can come from

– statistical estimates, machine learning
– analyst forecasts, futures markets

• works extremely well, even with bad predictions

• handles constraints (transmission line capacities, generator limits)

• used in many application areas, e.g., finance, aerospace, chemical
process control, supply chain, revenue management, unit commitment

• known by many other names: model predictive control, dynamic linear
programming, rolling horizon planning
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Examples

• some very simple examples

– hybrid vehicle energy management
– HVAC control
– processor speed scheduling
– energy storage control
– multi-carrier energy system
– load balancing

• even for these examples, optimization beats heuristics

• optimization can just as well handle more complex, large-scale models
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Hybrid vehicle power scheduling

• simplified model of parallel hybrid vehicle

• time varying required power at wheels

• objective: minimize fuel consumption subject to limits on engine/motor
power, battery capacity

Engine Brake

Motor/

Generator
Battery

Wheels
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Example

• required power (computed from speed, road slope, and losses)

Required Power
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Example

Engine Power

Braking Power
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• blue: hybrid vehicle; magenta: without battery

• energy savings: 25%
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HVAC Control

• single room with temperature sensor, conduction to outside, solar load

• time-varying solar load, outside temperature, temperature limits,
electricity price

• find cooling schedule that minimizes energy cost, while keeping
temperature within limits

Solar Load

Ambient

Cooling Input

Room
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Example

Energy Price
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Results

Energy Price
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• magenta: ambient temperature; blue: room temperature

• optimal action: pre-cool the room when energy price is low

LANL Workshop on Optimization & Control Theory for Smart Grids, 8/10/10 18



Multi-period processor speed scheduling

• processor adjusts its speed st ∈ [smin, smax] over T time periods

• must execute n jobs with known arrival times and deadlines

• energy consumed in period t is φ(st); total energy is E =
∑T

t=1 φ(st)

• objective: minimize total energy consumed subject to completion of
jobs, processor speed limits
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Example

• T = 16 periods, n = 12 jobs

• smin = 1, smax = 6, φ(st) = s2t

• jobs shown as bars over [Ai, Di] with area proportional to workload
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Optimal and uniform schedules

• uniform schedule gives Eunif = 194.2

• optimal schedule gives E⋆ = 160.3
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Energy storage control

• charge/discharge battery with varying, uncertain electricity price

• we pay to charge the battery; we are paid for discharging

• charging/discharging incurs a transaction cost

• profit is revenue minus transaction cost

• maximize profit subject to constraints on battery capacity,
charge/discharge rates, . . .
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Example

• blue: receding horizon policy; red: thresholding policy
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Multi-carrier energy system

Natural
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Multi-carrier energy system

• electric load and heat load must be met by combination of turbine,
cogen, generator, and boiler

• all have (nonlinearly varying) efficiencies, capacities

• fixed gas price

• goal: minimize operating cost
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Optimal operation
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• optimal operation with fixed electric load, varying heat load

• results plausible, but not obvious
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Dynamic load balancing

• n nodes (buffers/queues)

• m bidirectional links (for shipping between nodes)

• random arrivals of jobs at each node

• linear shipping cost, quadratic processing cost

• linear + quadratic buffering cost

• minimize cost subject to constraints on shipping/processing capacities
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Example

• example with 6 nodes, 10 bidirectional links
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Example

• typical arrivals trajectories; blue: queue 1, black: queue 2, red: queue 3
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Example

Overall Cost
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• blue: RHC; red: proportional policy (without shipping)
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Example

Buffer 1
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• blue: RHC; red: proportional policy (without shipping)
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Example

Total Outflow (Buffer 1)
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• blue: RHC; red: proportional policy (without shipping)
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Conclusions

optimization (and control)

• comes up in many smart grid contexts

• has been used in large complex applications with

– slow dynamics
– big, expensive computers (with staff)

(e.g., dispatch, refining)

• can be used in smaller applications, with fast dynamics

• should be a core technology in providing automated, smart operation
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